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1 Introduction1

The supplementary material comprehensively explains our methods and presents detailed experi-2

ment results. In the methods section (Sec 2), we delve into various components of the multiview3

segmentation process. We discuss the COLMAP [8] data structure for finding corresponding points4

in 3D space from 2D pixel coordinates (Sec 2.1), the rationale behind calculating nearest points after5

projecting 3D points onto 2D planes (Sec 2.2), the importance of maintaining a same number of6

points annotations across views (Sec 2.3), and the speed loss associated with Grounded-SAM [2]7

(Sec 2.4), which motivates our design of converting text prompts to points prompts. Additionally, we8

describe the points sampling strategy for text prompts (Sec 2.5) and the patch sampling strategy for9

perceptual loss in the scene object removal part (Sec 2.6). The Experiments section (Sec 3) presents10

detailed experiment results, including an overview of all scenes and their respective editing outcomes11

(Sec 3.3). We also discuss the mask refinement strategy for LaMa processing (Sec 3.1) and provide12

implementation details (Sec 3.2).13

2 Methods14

2.1 2D to 3D Matchness (COLMAP data structure)15

This section explains how to find the corresponding 3D position of 2D pixels through COLMAP’s16

[8] sparse reconstruction. Specifically, given a set of 2D pixels P2D picked by users indicating the17

unwanted objects on only one image, our ultimate goal is to spread P2D to all views while ensuring18

that the generated point annotations always indicate the target precisely. We address the above19

problem by projecting the target objects’ sparse point cloud in 3D space to all 2D image planes. To20

find the sparse point cloud indicated by P2D, we first utilize SAM (Segment-Anything [4]) to obtain21

an initial mask from points prompt P2D, then query COLMAP [8] sparse reconstruction with 2D22

pixel coordinates in the initial mask to get their corresponding 3D coordinates.23

Specifically, we can obtain three files cameras.bin, images.bin, and points3D.bin from COLMAP24

[8] sparse reconstruction 1. The images.bin and points3D.bin files provide a one-to-one mapping25

between the reconstructed sparse point cloud and 2D pixel coordinates as follows:26

# images.bin: Images indexed by all images with item
Image = {POINTS2D[] as (X, Y, POINT3D_ID)}
# points3D.bin: Points3D indexed by all 3D points with item
Point3D = {TRACK[] as (IMAGE_ID, POINT2D_IDX)}
# Thus, we can find Point3D by:
Point3D=Points3D[POINT3D_ID]=Points3D[Images[IMAGE_ID][POINTS2D]]

27
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2.2 Calculation of Nearest Points28

COLMAP [8] only provides sparse reconstruction, making it impossible to establish a connection29

from 2D to 3D for arbitrary image pixels. To tackle this limitation, we propose using the nearest30

points to the input points belonging to COLMAP’s reconstruction. This approach offers two potential31

solutions: 1) Querying the 3D coordinates for all points in the initial mask region and sorting them32

based on the distance between their corresponding 2D pixel positions and the input points prompt.33

Subsequently, the 3D points are projected back to the 2D image planes, and the projected 2D pixels34

are selected based on the sorting results. 2) Alternatively, the points in the initial mask region are35

sorted, and a certain number of 2D points are selected first. Then, their 3D points are queried and36

projected back to the 2D planes.37

We adopt the first strategy as the second one carries potential risks. If the camera angle changes38

significantly, there may be no corresponding pixel to the selected points in the initial mask. As a39

result, these points would lose their annotations for such a view, as they would be "out of the image."40

In contrast, the first strategy selects the nearest points after projecting the points back to the 2D planes41

from 3D space. This approach avoids the aforementioned problem by simply filtering out invalid 2D42

pixel coordinates after the projection from 3D. An example of this corner case is illustrated in Fig 1.43

Figure 1: Comparison of two nearest points strategies. The left image displays the user prompt, while
the first strategy (middle, project first) ensures annotations for extreme view angles. However, the
second strategy (right, sort first) loses all annotations.

2.3 Number of Points Annotation for Each View44

As discussed, we project the sparse point cloud of the target objects onto the 2D image plane to obtain45

accurate point annotations for all scene views. However, why do we only select a certain number of46

projected 2D points as input for SAM [4] rather than using all projected 2D points? This decision47

is because using all projected 2D points as input may result in an inaccurate mask, as many points48

may be interpreted as multiple instances for segmentation. Fig 2 illustrates an example of using all49

projected 2D points as SAM input. To avoid mask ambiguity, annotating several points that indicate50

the unwanted objects is sufficient, and there is no need to generate many points.51

2.4 Grounded-SAM speed loss52

This section presents evidence for why we chose to convert the text prompt to points prompt. As53

shown in Figure 3, directly using the same text input to predict masks for all views using Grounded-54

SAM [2] runs at a speed of approximately seven seconds per frame, while using points prompt55

accelerates the process to two frames per second. This speed improvement is because points prompt56

only requires projection calculations (pure matrix) and SAM prediction, whereas Grounded-SAM [2]57

also requires Grounding-DINO [5] prediction. Additionally, the detection ability of Grounding-DINO58

[5] is unreliable for all views. Therefore, we recommend switching from text input to points prompt59

to obtain higher-quality masks in less time.60

2.5 Points Sampling Strategy for Text Prompt61

Recall that we introduced our points sampling strategy for the text prompt, which involves selecting62

three points from the initial mask: top left, bottom right, and centre. We slightly revised the code by63

switching the corner points from top left and bottom right to top right and bottom left. However, this64
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Figure 2: Comparison of two strategies for selecting the number of points. The second row (using all
projected 2D points as input for SAM [4]) shows a serrated edge, while the first row (keeping the
number of points the same as the user input) exhibits a smooth mask edge.

Figure 3: Comparison of two strategies for predicting masks with a text prompt. The progress
bars above indicate that the switch strategy (left) is significantly faster than the non-switch strategy
(right). The images below illustrate an example of the detection failure (bottom right) of the book by
Grounding-DINO [5].

approach is unsuitable for complex scenes where unwanted objects result in slim, irregular masks. In65

such cases, the centre point calculation may be inaccurate, as shown in Fig 4. We can omit the centre66

point and use two corner points only to tackle this problem. Moreover, using the corner points directly67

can introduce problems, as points on the boundary are ambiguous for SAM [4] when predicting68

masks. Similarly, we use the centre point only to handle this issue.69

2.6 Patch Sampling Strategy for Perceptual Loss70

As perceptual loss [3] operates at the image level, we make it compatible with Neural Radiance Fields71

[6] training by sampling patches from the image. The patch sampling strategy used in SPIn-NeRF72

[7] involves downsampling the image by a factor of 16 to determine the patch shape. However, this73

approach can fail to adequately handle small mask regions, especially when the mask shape is smaller74

than the downsampled shape, as illustrated in an extreme example in Fig 1. To address this issue, we75
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Figure 4: Comparison of two corner cases discussed in Sec 2.5. Each image pair, from left to right,
displays points annotation and predicted masks. The left two columns depict the coarse sampling
strategy, while the right two columns represent the improved version. The first row provides an
example of an inaccurate centre point, and the second row demonstrates the ambiguous results when
boundary points are applied.

propose a new sampling strategy that downsamples the mask area by a factor of 4 to determine the76

patch shape rather than relying on the original image shape. Additionally, we enforce a minimum77

patch length of 32 and a maximum length of 64. If these constraints still prove inadequate in handling78

extreme situations, we skip applying perceptual loss for that specific image.79

3 Experiments80

3.1 Mask Refine for LaMa81

In this section, we focus on explaining our mask refinement method. As mentioned in SPIn-NeRF [7],82

applying masks that precisely match the unwanted objects can lead to unexpected outcomes when83

using the 2D inpainting network LaMa [9]. Specifically, LaMa [9] tends to preserve the silhouettes84

or edge shadows of the objects when the mask shape provides some "knowledge" about the masked85

area (Fig 5). In practice, we employ slightly more generous masks to achieve plausible inpainting86

results, such as dilation or scaling. However, this refinement process must be cautiously approached,87

as enlarging the mask can make it more challenging for LaMa [9] to generate reasonable priors.88

In SPIn-NeRF [7], they employ a dilation operation with a 5× 5 kernel for 5 iterations. However, this89

approach is too coarse for our scenes with various characteristics. For example, the mask may become90

too large after dilation and include areas that should remain if the target region is relatively small.91

Also, masks with highly irregular shapes can lose their original form, such as crossing slim chair legs.92

In addition, there may exist noises for complicated scenes or ambiguous prompts. However, dilation93

alone will magnify noises in the mask image. To address these issues, we provide three parameterized94

mask refinement operations that can be customized by users. These operations include dilation95

with adjustable kernel size and iteration steps, contour equidistant expansion with flexible scaling96

steps, and a filtering mechanism to keep a specified number of masks in an image and eliminate97

segmentation noise.98

We have carefully fine-tuned the above operations for the scenes used in our experiments to ensure99

that the refined mask is suitable for LaMa [7] inference while minimizing changes to the segmentation100

results.101

3.2 Implementation Details102

All our experiments are conducted on a single RTX 3090 or A5000 GPU. We evaluated our method103

and the SPIn-NeRF [7] approach on all 20 scenes. We tested both the vanilla NeRF [6] and TensoRF104

[1] architectures using our implementation. Since the use of perceptual loss significantly increases105

memory usage, we train our Ours-NeRF [6] model with perceptual loss using a batch size of 1,106
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Figure 5: Example of LaMa [9] inpainting results with (top) and without (bottom) mask refinement.
Images in the second row demonstrate the effect of using masks without refinement, which precisely
match the objects but result in the retention of object silhouettes.

while SPIn-NeRF [7] and Ours-TensoRF [1] are trained with a batch size of 4. We follow the only107

configuration provided by SPIn-NeRF [7] to reproduce their results on all our scenes 2.108

Regarding the testing phase, the ground truth images provided by SPIn-NeRF [7] after object deletion109

do not indicate which images they corresponded to before deletion. Therefore, we rendered these110

views using the camera parameters to generate the corresponding images for evaluation.111

3.3 More Experiment Results112

Quantity In this part, we give the detailed metrics tested in our experiments with all scene data113

available as Table 1.114

Quality In this part, we give our experiments’ detailed original and edited image pairs with all115

scene data available as Fig 6, 7 and 8.116

2SPIn-NeRF GitHub
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Figure 6: Original image (left), image with regions to be removed (middle), and images after removal
from new views (right) for all scenes. (Begin)
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Figure 7: Original image (left), image with regions to be removed (middle), and images after removal
from new views (right) for all scenes. (Cont)
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Figure 8: Original image (left), image with regions to be removed (middle), and images after removal
from new views (right) for all scenes. (End)
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Table 1: Experiment results for scene object removal. The first row indicates the scene name, and
the first column indicates the method name. The abbreviations in the second column represent the
loss modules used. ’dir’ denotes training Neural Radiance Fields with LaMa [9] priors directly, ’dp’
denotes partial depth, ’da’ denotes all depth, and ’lpips’ denotes the use of perceptual loss. It is worth
noting that perceptual loss is always applied with all-depth supervision enabled.

2 3 4 7 10 12 book trash Mean

Ours-
NeRF [6]

dir
PSNR↑ 16.05 11.60 13.05 14.44 13.02 11.50 15.88 16.77 14.04
FID↓ 102.41 46.29 80.40 38.64 49.14 42.67 90.33 39.02 61.11

LPIPS↓ 0.8556 0.5730 0.7560 0.7246 0.6541 0.8084 0.5446 0.5510 0.6834

da
PSNR↑ 15.99 11.61 13.06 14.45 13.01 11.48 15.92 16.77 14.04
FID↓ 106.36 49.04 81.42 39.28 55.07 45.87 95.98 48.62 65.21

LPIPS↓ 0.8542 0.5759 0.7624 0.7315 0.6605 0.8132 0.5484 0.5682 0.6893

dp
PSNR↑ 16.07 11.59 13.10 14.60 13.26 11.53 16.16 16.97 14.16
FID↓ 111.16 47.94 77.93 40.40 49.37 46.18 91.72 52.97 64.71

LPIPS↓ 0.8643 0.5757 0.7843 0.7418 0.6775 0.8177 0.5560 0.6000 0.7022

lpips
PSNR↑ 16.03 11.62 13.10 14.62 13.28 11.49 16.15 16.99 14.16
FID↓ 70.23 39.58 74.77 44.94 55.96 41.99 87.27 50.48 58.15

LPIPS↓ 0.8522 0.5532 0.7157 0.7157 0.6750 0.7593 0.5474 0.5917 0.6763

Ours-
TensoRF [1]

dir
PSNR↑ 15.91 11.40 13.04 14.41 12.88 11.37 15.84 16.62 13.93
FID↓ 90.05 37.04 80.09 37.55 43.84 38.38 64.63 34.66 53.28

LPIPS↓ 0.8039 0.5068 0.7200 0.6810 0.6179 0.7454 0.5167 0.5042 0.6370

da
PSNR↑ 15.89 11.41 13.04 14.42 12.88 11.37 15.84 16.65 13.94
FID↓ 101.01 37.91 81.2 37.68 44 38.95 66.44 33.3 55.06

LPIPS↓ 0.8041 0.5060 0.7198 0.6862 0.6165 0.7459 0.5183 0.5031 0.6375

lpips
PSNR↑ 15.94 11.42 13.02 14.37 12.89 11.40 15.88 16.63 13.94
FID↓ 72.10 34.72 74.04 38.66 43.89 38.02 64.91 32.96 49.91

LPIPS↓ 0.7909 0.4937 0.6684 0.6445 0.6165 0.7179 0.5094 0.4882 0.6162

SPIn-
NeRF [7]

dir
PSNR↑ 16.78 12.05 14.92 15.35 12.72 12.47 17.77 16.73 14.85
FID↓ 94.80 93.80 73.19 26.41 62.10 55.37 105.74 48.76 70.02

LPIPS↓ 0.8636 0.5839 0.7285 0.7028 0.6971 0.8110 0.4388 0.6222 0.6810

da
PSNR↑ 16.54 12.00 14.93 15.31 12.71 12.45 17.84 16.74 14.82
FID↓ 93.94 93.11 76.07 29.10 54.14 53.19 113.91 47.08 70.07

LPIPS↓ 0.8687 0.5653 0.7299 0.6941 0.6880 0.8071 0.4394 0.6090 0.6752

lpips
PSNR↑ 16.69 12.08 14.90 15.34 12.73 12.39 17.84 16.70 14.83
FID↓ 71.75 68.35 61.10 43.95 91.73 50.52 102.71 47.98 67.26

LPIPS↓ 0.8489 0.5472 0.6815 0.6552 0.7003 0.7518 0.4226 0.5972 0.6506
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